

AN-862000

RS-485 Modbus Device Integration

Document No.: AN-862000, Rev 1.00

Applicable Products: ComView NX(L/X)

Contact: support@csstel.com

Web: www.csstel.com

csstel

mailto:support@csstel.com
http://www.csstel.com/

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 2 of 14

Introduction

ComView provides two RS-485 ports to support up to 64 Modbus devices that range

from simple sensors (such as temperature sensor) to more complex devices (such as

smart power meter).

Modbus is a commonly used client-server messaging protocol that is implemented in a

wide range of devices for data communication. To support Modbus, the device

manufacturers/developers implement a Modbus register map and Modbus function

codes specific to their own devices. Such information is provided to the users so that

specific Modbus drivers can be developed to communicate and to read/write data with

the device. Therefore, to support a Modbus device, customized software development

is typically required which adds to project delay and costs.

ComView offers RS-485 app whose frontend is uniquely implemented to simplify the

integration of Modbus devices with ComView solutions without having to customize or

develop specific drivers to support such devices. This application note is intended to

illustrate this Modbus implementation.

This application note does not provide detailed description of how to use ComView, its

connectivity and configuration, and other supporting information, as these are beyond

the scope of this document. Refer to other resources for more details.

References:

[1]. ComView - User Guide

[2]. Modbus Specifications - https://modbus.org/specs.php

https://modbus.org/specs.php

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 3 of 14

Modbus Overview

Modbus is client-server messaging protocol for communication between devices. The

device that initiates data request is called Modbus client (e.g., ComView) and the

device that initiates the response is called Modbus server (e.g., power meter). In an RS-

485 Modbus network, there is one client and up to 247 servers, each with a unique

server ID/address from 1 to 247.

Modbus bases its data model on four primary tables to form a register map as shown

below. Modbus function codes are used to access registers within these tables.

Modbus Register Map

Coil/Register Numbers Data Addresses Type Table Name

1-9999 0000 to 270E Read-Write Discrete Output Coils (1-bit)

10001-19999 0000 to 270E Read-Only Discrete Input Contacts (1-bit)

30001-39999 0000 to 270E Read-Only Input Registers (2-byte)

40001-49999 0000 to 270E Read-Write Holding Registers (2-byte)

Modbus protocol defines three categories of function codes: public, user-defined, and

reserved. A subset of public function codes most recognized by Modbus devices are

shown in the table below:

Commonly Used Public Function Codes

Function Code Action Table Name

01 (01 hex) Read Discrete Output Coils

05 (05 hex) Write single Discrete Output Coil

15 (0F hex) Write multiple Discrete Output Coils

02 (02 hex) Read Discrete Input Contacts

04 (04 hex) Read Input Registers

03 (03 hex) Read Holding Registers

06 (06 hex) Write single Holding Register

16 (10 hex) Write multiple Holding Registers

To access a Modbus register in a table, a function code designated for that table is

used, e.g., function codes 01, 05, and 15 are used with Discrete Output table. To

support a Modbus device, users would require a technical document that specifies the

device register map and its supported function codes from the device manufacturer to

develop a software driver for such device. ComView RS-485 app helps simplify this

process.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 4 of 14

Modbus Device Support

ComView RS-485 app offers users a unique implementation for Modbus device

support. It simply lets users define the Modbus function code/register pairs that are

required to read specific data from the device register map. Furthermore, RS-485 app

also lets users define data record format and apply mathematical expressions to

convert register values to meaningful data.

Users can conveniently set up Modbus device support by logging on ComView via its

web interface and navigate to ‘CONFIGURATION -> RS-485 APP’. A sample web page

is shown below:

Registers to Read:

Description: To define a list of Modbus function code and register pairs for RS-485 app to read data
from the Modbus device registers in accordance with the device technical document on
Modbus

Usage: Enter CSV-string in ‘FC.Reg0, FC.Reg1, …, FC.RegA:c, FC.RegN’ format:

- FC: Modbus function code number in hex value (e.g., ‘03’, function code 03 to read
holding register)

- RegA: Modbus register address in decimal value (e.g., ‘40100’, holding register
40100)

- RegA:c : consecutive Modbus registers, ‘c’ as total number of registers (e.g.,
‘40100:3’ represents register addresses 40100, 40101, and 40102)

Note: The sample entry ‘03.099:2, 03.105, 03.106:4’ translates to a series of function code 03
to read 7 Modbus registers: 03.99, 03.100, 03.105, 03.106, 03.107, 03.108, 03.109. The
values of these registers are mapped to ‘Reg[0..N]’ in consecutive sequence as follows:

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 5 of 14

- Reg0 = value of Modbus register 99
- Reg1 = value of Modbus register 100
- Reg2 = value of Modbus register 105
- Reg3 = value of Modbus register 106
- Reg4 = value of Modbus register 107
- Reg5 = value of Modbus register 108
- Reg6 = value of Modbus register 109

 These register labels are then used in ‘*Var’ expressions.

Data Record Definition:

Description: To define fields in CSV-formatted data record for RS-485 device

Usage: Enter multi-line strings in the following format:
Var0, UoM0, Var1, UoM1,…,Var9,UoM9
*Var0 = expression of (Reg[0..N])
…
*Var9 = expression of (Reg[0..N])

- Reg[0..N]: values of Modbus registers
- *Var[0..9]: string format representing expression of Reg[0..N] using arithmetic

operators and/or IEEE-754 32-bit floating point conversion expression:
o ‘+’: addition
o ‘-‘: subtraction
o ‘*’: multiplication
o ‘/’: division
o ‘^’: exponential

- ‘f32(RegA,RegB)’: IEEE-754 32-bit floating point conversion

Data Record Description:

Description: A placeholder intended for visual interpretation of data fields in CSV-formatted data
record for RS-485 device. It is non-functional and is for references only.

Usage: Enter CSV-string in ‘Label0, Label1, …, LabelN’ format:

- Label[0..N]: user-definable text for data field [0..N]

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 6 of 14

Example - Temperature Sensor Support

This section shows an example of how to configure ComView RS-485 app to read

current temperature from a Modbus temperature sensor.

In this example, the sensor has the following subset of Modbus registers as extracted

from its technical manual (with columns as registers, access type, function codes, and

description):

From the above, the register of interests is 100 for current temperature. It is in ⁰C only.

To get actual current temperature in ⁰C, the value read must be divided by 10. To get

temperature in ⁰F, calculation is required by using the formula “F=C*1.8 + 32”. The

following web page shows the user entries defined for this requirement.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 7 of 14

Registers to Read:

Value: 03.100

Note: Use function code 03 to read Modbus register 100 and its value mapped to ‘Reg0’ for
use in Var expression

Data Record Definition:

Value: Var0, C, Var1, F

Note: *Var0 = Reg0/10 ; register 100 divided by 10 to get current temperature
*Var1 = Reg0/10*1.8 + 32 ; convert ⁰C to ⁰F

Data Record Description:

Value: C,F

Note: Values represent current temperature in ⁰C and in ⁰F

The above illustrates how ComView RS-485 app lets users define simple expressions to

read Modbus register in ⁰C and convert to ⁰F to support a Modbus temperature sensor,

such as for temperature monitoring requirements, without having to develop any

software driver for it.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 8 of 14

Example – Power Meter Support

This section shows an example of how to configure ComView RS-485 app to read

various phase-1 power variables (line voltage, current, power, and frequency) from a

Modbus power meter.

In this example, the power meter has the following subset of Modbus registers as

extracted from its technical manual:

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 9 of 14

From the above, the registers of interests are:

30001 Phase 1 line to neutral voltage (Volts), start address 0000, 2 registers (4-byte data)

30007 Phase 1 current (Amps), start address 0006 (0x0006), 2 registers (4-byte data)

30013 Phase 1 power (Watts), start address 0012 (0x000C), 2 registers (4-byte data)

30071 Frequency of supply voltages (Hz), start address 0070 (0x0046), 2 registers (4-byte data)

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 10 of 14

As specified in the device technical manual, Modbus function code 0x04 is used to

read the above 3xxxx Input registers.

To read those registers, the Modbus function code and register pair definitions would

be:

04.00:2 ; to read Phase 1 line to neutral voltage, register 30000 & 30001

04.06:2 ; to read Phase 1 current, register 30006 & 30007

04.12:2 ; to read Phase 1 power, register 30012 & 30013

04.70:2 ; to read frequency, register 30070 & 30071

Additionally, data format is in 4-byte IEEE 754 floating point and therefore they must

be converted to decimal values.

The following web page shows the user entries defined for this requirement.

Registers to Read:

Value: 04.00:2, 04.06:2, 04.12:2, 04.70:2

Note: Use function code 04 to read Modbus registers and their values are mapped to
‘Reg[0..N’, as follows:

- Reg0 = value of Modbus register 30000
- Reg1 = value of Modbus register 30001
- Reg2 = value of Modbus register 30006
- Reg3 = value of Modbus register 30007
- Reg4 = value of Modbus register 30012
- Reg5 = value of Modbus register 30013
- Reg6 = value of Modbus register 30070
- Reg7 = value of Modbus register 30071

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 11 of 14

 These register labels are then used in ‘*Var’ expressions.

Data Record Definition:

Value: Var0, V, Var1, A, Var2, W, Var3, Hz

Note: *Var0 = f32(Reg0, Reg1) ; IEEE-754 32-bit floating point conversion for V
*Var1 = f32(Reg2, Reg3) ; IEEE-754 32-bit floating point conversion for A
*Var2 = f32(Reg4, Reg5) ; IEEE-754 32-bit floating point conversion for W
*Var3 = f32(Reg6, Reg7) ; IEEE-754 32-bit floating point conversion for Hz

Data Record Description:

Value: V,A,W,Hz

Note: Values represent V,A,W,Hz measurements

The above illustrates how ComView RS-485 app lets users define simple expressions to

read Modbus registers with data in 4-byte IEEE 754 floating point and perform data

conversions to decimal values to support a Modbus power meter, such as for power

monitoring requirements, without having to develop any complex software driver for it.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 12 of 14

Summary

This application note illustrates how ComView RS-485 app helps users quickly and

easily define expressions to provide support for a Modbus device so that it can be

integrated into ComView solutions to meet user operational requirements. Users can

define Modbus function code/register pairs based on the Modbus device manufacturer

specifications to read data from its Modbus registers and to define mathematical

expressions to perform data conversions. With this unique implementation of Modbus

support provided by ComView, most Modbus devices can be readily supported

without the need for customizing or developing Modbus drivers, helping simplify

device integration and reduce costs.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 13 of 14

About CSSTEL

CSSTEL is a privately held developer and manufacturer of ComView hardware and

software solutions for secure, remote infrastructure site management since 1997 with

installations in over 30 countries around the world.

We offer ComView solutions that are scalable and customizable to monitor and

manage virtually the entire spectrum of remote site infrastructure and site conditions.

We help telecom service providers, carriers, financial institutions, healthcare providers,

government agencies, utilities, and other public and private sector organizations

maintain constant visibility and control over their remote site infrastructure.

IMPORTANT:

➢ CSSTEL Inc. assumes no responsibility for errors or omissions, or for damages
resulting from the use of information contained in this document or from the
use of programs and source code that accompany it. In no event shall CSSTEL
Inc. be liable for any loss of profit, or any other commercial damage caused or
alleged to have been caused directly or indirectly.

➢ No parts of this work may be reproduced in any form or by any means -
graphic, electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems - without the written permission of
CSSTEL Inc.

➢ Products that are referred to in this document may be either trademarks and/or

registered trademarks of the respective owners. CSSTEL Inc. makes no claim to
these trademarks.

➢ All rights reserved.

AN-862000 – RS-485 Modbus Device Integration Rev 1.00

CSSTEL Inc. © 2023 Page 14 of 14

Revision History

Revision Date Description

1.00 2023-01-08 Initial release

*** End of document ***

